Ôàðìàêîäèíàìè÷åñêîå îáîñíîâàíèå ïðèìåíåíèÿ Ãëàòèîíà ïðè COVID-19

Ôàðìàêîäèíàìè÷åñêîå îáîñíîâàíèå ïðèìåíåíèÿ  Ãëàòèîíà  ïðè COVID-19

 

Ãëóòàòèîí ïðåäñòàâëÿåò ñîáîé ëèíåéíûé òðèïåïòèä ñ ñóëüôãèäðèëüíîé ãðóïïîé, â ñîñòàâ êîòîðîãî âõîäÿò L-ãëóòàìèí, L-öèñòåèí è ãëèöèí. Îí èãðàåò âàæíóþ ôóíêöèþ â çàùèòå êëåòîê îðãàíèçìà, ÿâëÿÿñü ñèëüíûì àíòèîêñèäàíòîì.  îðãàíèçìå ÷åëîâåêà íåõâàòêà ãëóòàòèîíà âåäåò ê âîçíèêíîâåíèþ ìíîãèõ áîëåçíåé, òàêèõ êàê áîëåçíü Ïàðêèíñîíà, òèðîçèíåìèÿ I òèïà, îòðàâëåíèå àëêîãîëåì è äðóãèå. Ýêñïåðèìåíòû in vivo è in vitro ïîêàçàëè, ÷òî íåõâàòêà ãëóòàòèîíà ìîæåò ïðèâåñòè ê ïîâðåæäåíèþ ìèòîõîíäðèé è ãèáåëè êëåòîê, âûçâàííûõ óâåëè÷åíèåì ÷èñëà òîêñè÷íûõ ôîðì êèñëîðîäà, ïðèâîäÿùèõ ê ïîâûøåíèþ êîëè÷åñòâà ñâîáîäíûõ ðàäèêàëîâ.(1)

Ãëóòàòèîí ñïîñîáåí ïðåäîòâðàùàòü ïîâðåæäåíèÿ êëåòîê ïîñðåäñòâîì ñîåäèíåíèÿ ñ òîêñè÷åñêèìè âåùåñòâàìè è/èëè èõ ìåòàáîëèòàìè. Îáåçâðåæèâàíèå êñåíîáèîòèêîâ ãëóòàòèîíîì ìîæåò îñóùåñòâëÿòüñÿ òðåìÿ ðàçëè÷íûìè ñïîñîáàìè: ïóòåì êîíúþãàöèè ñóáñòðàòà ñ ãëóòàòèîíîì, â ðåçóëüòàòå íóêëåîôèëüíîãî çàìåùåíèÿ è â ðåçóëüòàòå âîññòàíîâëåíèÿ îðãàíè÷åñêèõ ïåðîêñèäîâ äî ñïèðòîâ.(1)

Ñèñòåìà îáåçâðåæèâàíèÿ ñ ó÷àñòèåì ãëóòàòèîíà èãðàåò óíèêàëüíóþ ðîëü â ôîðìèðîâàíèè ðåçèñòåíòíîñòè îðãàíèçìà ê ñàìûì ðàçëè÷íûì âîçäåéñòâèÿì è ÿâëÿåòñÿ íàèáîëåå âàæíûì çàùèòíûì ìåõàíèçìîì êëåòêè.  õîäå áèîòðàíñôîðìàöèè íåêîòîðûõ êñåíîáèîòèêîâ ïðè ó÷àñòèè ãëóòàòèîíà îáðàçóþòñÿ òèîýôèðû, êîòîðûå çàòåì ïðåâðàùàþòñÿ â ìåðêàïòàíû, ñðåäè êîòîðûõ îáíàðóæåíû òîêñè÷íûå ïðîäóêòû. Íî êîíúþãàòû ãëóòàòèîíà ñ áîëüøèíñòâîì êñåíîáèîòèêîâ ìåíåå ðåàêöèîííîñïîñîáíû è áîëåå ãèäðîôèëüíû, ÷åì èñõîäíûå âåùåñòâà, à ïîýòîìó ìåíåå òîêñè÷íû è ëåã÷å âûâîäÿòñÿ èç îðãàíèçìà.(1)

Ãëóòàòèîí ñâÿçûâàåò îãðîìíîå êîëè÷åñòâî ëèïîôèëüíûõ ñîåäèíåíèé (ôèçè÷åñêîå îáåçâðåæèâàíèå), ïðåäîòâðàùàÿ èõ âíåäðåíèå â ëèïèäíûé ñëîé ìåìáðàí è íàðóøåíèå ôóíêöèé êëåòêè.Òàêèì îáðàçîì, ãëóòàòèîí óëó÷øàåò ñòàáèëüíîñòü êëåòî÷íîé ìåìáðàíû, çàùèùàåò ìåìáðàíó êëåòîê ïå÷åíè, óâåëè÷èâàåò àêòèâíîñòü ôåðìåíòîâ è ïå÷åíè è ñïîñîáñòâóåò äåòîêñèêàöèè è âîññòàíîâèòåëüíîé àêòèâíîñòè ïå÷åíè ïóòåì óíè÷òîæåíèÿ ñâîáîäíûõ ðàäèêàëîâ.(1)

Êàê ïîêàçûâàåò èìåþùèéñÿ îïûò - ââåäåíèå ïðåïàðàòà Ãëàòèîí â êîìïëåêñíóþ òåðàïèþ òÿæåëûõ ôîðì COVID-19 ïîçâîëÿåò ìèíèìèçèðîâàòü ðèñê ðàçâèòèÿ óãðîæàþùèõ æèçíè îñëîæíåíèé, âîññòàíàâëèâàÿ ýôôåêòèâíóþ ðàáîòó âíóòðåííèõ ñèñòåì çàùèòû îðãàíèçìà (èììóííîé, äåòîêñèöèðóþùåé, âûäåëèòåëüíîé è äðóãèõ ñèñòåì ñîõðàíåíèÿ è óñòðàíåíèÿ íàðóøåíèé ãîìåîñòàçà), ïîëíîöåííàÿ ðàáîòà êîòîðûõ ïðåäîïðåäåëÿåò áûñòðåéøåå âûçäîðîâëåíèå  è îòíîñèòåëüíî ëåãêîå òå÷åíèå COVID-19. (19)

Áîëåå âûñîêèé óðîâåíü ñåðüåçíûõ çàáîëåâàíèé è ñìåðòåé îò êîðîíàâèðóñà SARS-CoV-2 (COVID-19) ñðåäè ïîæèëûõ ëþäåé è ëèö ñ ñîïóòñòâóþùèìè çàáîëåâàíèÿìè ñâèäåòåëüñòâóåò î òîì, ÷òî áèîëîãè÷åñêèå ïðîöåññû, ñâÿçàííûå ñ âîçðàñòîì è çàáîëåâàíèåì, äåëàþò òàêèõ ëþäåé áîëåå ÷óâñòâèòåëüíûìè ê ôàêòîðàì ñòðåññà îêðóæàþùåé ñðåäû, âêëþ÷àÿ èíôåêöèîííûå àãåíòû êàê êîðîíàâèðóñ SARS-CoV-2.(3)  ÷àñòíîñòè, íàðóøåíèå îêèñëèòåëüíî-âîññòàíîâèòåëüíîãî ãîìåîñòàçà è ñâÿçàííûé ñ íèì îêèñëèòåëüíûé ñòðåññ(4,6,8), ïî-âèäèìîìó, ÿâëÿþòñÿ âàæíûìè áèîëîãè÷åñêèìè ïðîöåññàìè, êîòîðûå ìîãóò îáúÿñíèòü ïîâûøåííóþ èíäèâèäóàëüíóþ âîñïðèèì÷èâîñòü ê ðàçëè÷íûì âîçäåéñòâèÿì îêðóæàþùåé ñðåäû. Íåñïîñîáíîñòü âíóòðåííèõ ñèñòåì çàùèòû ðåàëèçîâàòü ñâîé ïîòåíöèàë ïðèâîäèò ê ðàçâèòèþ òÿæåëîé ôîðìû COVID-19 è ÿâëÿåòñÿ ñëåäñòâèåì ñî÷åòàíèÿ öåëîãî ðÿäà íåãàòèâíûõ ñîñòàâëÿþùèõ, âçàèìíî óñèëèâàþùèõ äðóã äðóãà.(7) Òàê, âûçâàííàÿ âèðóñîì âûñîêàÿ òîêñè÷åñêàÿ íàãðóçêà ñóììèðóåòñÿ è óñèëèâàåò íåãàòèâíûå èçìåíåíèÿ âíóòðåííèõ ñèñòåì çàùèòû, îáóñëîâëåííûõ çàáîëåâàíèåì (îæèðåíèå, ãèïåðòîíè÷åñêàÿ áîëåçíü, ñàõàðíûé äèàáåò, îíêîëîãèÿ è äð.) è ïîáî÷íûìè ýôôåêòàìè ñðåäñòâ ôàðìàêîòåðàïèè ïàöèåíòà. (10) Ñëåäñòâèåì òàêîãî ñî÷åòàíèÿ ñòàíîâÿòñÿ îðãàííûå è ñèñòåìíûå ôóíêöèîíàëüíûå íàðóøåíèÿ, èììóíîýíäîêðèííûå äèçðåãóëÿòîðíûå ðàññòðîéñòâà, êëåòî÷íûå äèñôóíêöèè, ïðèâîäÿùèå ê èçìåíåíèÿì ìåòàáîëèçìà, ñîïðÿæåííûìè ñ íåãàòèâíûì âëèÿíèåì íà ðåãóëèðóåìîñòü êëåòî÷íûõ, îðãàííûõ è ñèñòåìíûõ ïðîöåññîâ, ÷òî â èòîãå ïðåäîïðåäåëÿåò ôîðìèðîâàíèå ìíîæåñòâà ïîðî÷íûõ êðóãîâ, ñîçäàþùèõ ñðåäó, èçâðàùàþùóþ äåéñòâèå åñòåñòâåííûõ áèîðåãóëÿòîðîâ, ôàðìàêîëîãè÷åñêóþ àêòèâíîñòü ËÑ.(2)(22)

Íåñêîëüêî èññëåäîâàíèé ïîêàçûâàþò, ÷òî áîëåå âûñîêèå óðîâíè ãëóòàòèîíà ìîãóò óëó÷øèòü èíäèâèäóàëüíóþ ðåàêöèþ íà âèðóñíûå èíôåêöèè.(19) ÷àñòíîñòè, èçâåñòíî, ÷òî ãëóòàòèîí çàùèùàåò èììóííûå êëåòêè õîçÿèíà áëàãîäàðÿ ñâîåìó àíòèîêñèäàíòíîìó ìåõàíèçìó, à òàêæå îòâå÷àåò çà îïòèìàëüíîå ôóíêöèîíèðîâàíèå ìíîæåñòâà êëåòîê, êîòîðûå ÿâëÿþòñÿ ÷àñòüþ èììóííîé ñèñòåìû.(9) Âàæíî îòìåòèòü, ÷òî ñóùåñòâóþò äîêàçàòåëüñòâà òîãî, ÷òî ãëóòàòèîí ïîäàâëÿåò ðåïëèêàöèþ ðàçëè÷íûõ âèðóñîâ íà ðàçíûõ ýòàïàõ æèçíåííîãî öèêëà âèðóñà è ýòî ïðîòèâîâèðóñíîå ñâîéñòâî GSH, ïî-âèäèìîìó, ïðåäîòâðàùàåò óâåëè÷åíèå âèðóñíîé íàãðóçêè è ïîñëåäóþùåå ìàññîâîå âûñâîáîæäåíèå âîñïàëèòåëüíûõ êëåòîê. â ëåãêîå («öèòîêèíîâûé øòîðì»).(2)

Ïðîòèâîâèðóñíàÿ àêòèâíîñòü ãëóòàòèîíà áûëà ïðîäåìîíñòðèðîâàíà â èññëåäîâàíèè De Flora et al.(18), êîòîðûå ïîêàçàëè, ÷òî ïðîôèëàêòè÷åñêîå ââåäåíèå N-àöåòèëöèñòåèíà (NAC, ïðåäøåñòâåííèê ãëóòàòèîíà) â òå÷åíèå 6 ìåñÿöåâ çíà÷èòåëüíî ñíèæàåò ÷àñòîòó êëèíè÷åñêè î÷åâèäíûõ ãðèïïà è ãðèïïîïîäîáíûõ ýïèçîäîâ, îñîáåííî ó ïîæèëûõ ëþäåé èç ãðóïïû âûñîêîãî ðèñêà. Êðîìå òîãî, ïàòîôèçèîëîãè÷åñêèå ñîñòîÿíèÿ, òàêèå êàê ïîâðåæäåíèå êëåòîê ëåãêèõ è âîñïàëåíèå ó ïàöèåíòîâ ñ òÿæåëûì ÎÐÄÑ, áûëè îïðåäåëåíû êàê öåëè ëå÷åíèÿ N-àöåòèëöèñòåèíà.  ÷àñòíîñòè, áûëî îáíàðóæåíî, ÷òî äåôèöèò âîññòàíîâëåííîãî ãëóòàòèîíà â àëüâåîëÿðíîé æèäêîñòè ó ïàöèåíòîâ ñ ÎÐÄÑ óñèëèâàåò ïîâðåæäåíèå êëåòîê ëåãêèõ èç-çà ROS / îêèñëèòåëüíîãî ñòðåññà è âîñïàëåíèÿ, è ýòî ïîâðåæäåíèå ìîæíî ýôôåêòèâíî ïðåäîòâðàòèòü è ëå÷èòü ñ ïîìîùüþ ââåäåíèÿ N-àöåòèëöèñòåèíà.(19) Äåôèöèò ãëóòàòèîíà òàêæå ìîæåò ñïîñîáñòâîâàòü ïîâûøåííîé àêòèâàöèè ôàêòîðà ôîí Âèëëåáðàíäà, âûçûâàþùåãî êîàãóëîïàòèþ ó ïàöèåíòîâ ñ COVID-19.(3,9,13)

Ýíäîãåííûé äåôèöèò ãëóòàòèîíà, ïî-âèäèìîìó, ÿâëÿåòñÿ ðåøàþùèì ôàêòîðîì, óñèëèâàþùèì îêèñëèòåëüíîå ïîâðåæäåíèå ëåãêèõ, âûçâàííîå SARS-CoV-2, è, êàê ñëåäñòâèå, ïðèâîäèò ê ñåðüåçíûì ïðîÿâëåíèÿì, òàêèì êàê îñòðûé ðåñïèðàòîðíûé äèñòðåññ-ñèíäðîì, ïîëèîðãàííàÿ íåäîñòàòî÷íîñòü è ñìåðòü ïàöèåíòîâ ñ COVID-19. Êîãäà ïðèíèìàåòñÿ âî âíèìàíèå ïðîòèâîâèðóñíàÿ àêòèâíîñòü GSH, ëþäè ñ äåôèöèòîì ãëóòàòèîíà, èìåþò áîëåå âûñîêóþ âîñïðèèì÷èâîñòü ê íåêîíòðîëèðóåìîé ðåïëèêàöèè âèðóñà SARS-CoV-2 è, òàêèì îáðàçîì, ñòðàäàþò îò âîçðàñòàþùåé âèðóñíîé íàãðóçêè.(10) Âûðàæåííîñòü êëèíè÷åñêèõ ïðîÿâëåíèé ó ïàöèåíòîâ ñ COVID-19, ïî-âèäèìîìó, îïðåäåëÿåòñÿ ñòåïåíüþ íàðóøåíèÿ îêèñëèòåëüíî-âîññòàíîâèòåëüíîãî ãîìåîñòàçà, ñâÿçàííîãî ñ äåôèöèòîì âîññòàíîâëåííîãî ãëóòàòèîíà è ïîâûøåíèåì ïðîäóêöèè ÀÔÊ.  ÷àñòíîñòè, ïàöèåíòû ñ COVID-19 ñ óìåðåííûì è òÿæåëûì çàáîëåâàíèåì èìåëè áîëåå íèçêèé óðîâåíü ãëóòàòèîíà, áîëåå âûñîêèå óðîâíè ROS è áîëåå âûñîêèé îêèñëèòåëüíî-âîññòàíîâèòåëüíûé ñòàòóñ (ñîîòíîøåíèå ROS / GSH), ÷åì ïàöèåíòû ñ COVID-19 ñ ëåãêèì çàáîëåâàíèåì.(22) Äëèòåëüíûå è òÿæåëûå ïðîÿâëåíèÿ èíôåêöèè COVID-19 ó îäíîãî èç íàøèõ ïàöèåíòîâ ñ âûðàæåííûì äåôèöèòîì ãëóòàòèîíà ïðåäïîëàãàþò, ÷òî ñòåïåíü ñíèæåíèÿ ãëóòàòèîíà îòðèöàòåëüíî êîððåëèðóåò ñî ñêîðîñòüþ ðåïëèêàöèè âèðóñà è ÷òî óâåëè÷åíèå âèðóñíîé íàãðóçêè óñóãóáëÿåò îêèñëèòåëüíîå ïîâðåæäåíèå ëåãêèõ. Ýòî îòêðûòèå ïðåäïîëàãàåò, ÷òî âèðóñ íå ìîæåò àêòèâíî ðåïëèöèðîâàòüñÿ ïðè áîëåå âûñîêèõ óðîâíÿõ êëåòî÷íîãî ãëóòàòèîíà, è, ñëåäîâàòåëüíî, áîëåå ëåãêèå êëèíè÷åñêèå ñèìïòîìû íàáëþäàþòñÿ ïðè áîëåå íèçêèõ âèðóñíûõ íàãðóçêàõ.(2)

Äåôèöèò ãëóòàòèîíà - ýòî ïðèîáðåòåííîå ñîñòîÿíèå, ñâÿçàííîå ñî ñíèæåíèåì áèîñèíòåçà è / èëè ïîâûøåííûì èñòîùåíèåì ýíäîãåííîãî ïóëà GSH ïîä âëèÿíèåì òàêèõ ôàêòîðîâ ðèñêà, êàê ñòàðåíèå, ìóæñêîé ïîë, êîìîðáèäíîñòü è êóðåíèå îòäåëüíî èëè â ñî÷åòàíèè.(10,12,15) Äåôèöèò ãëóòàòèîíà ó ïàöèåíòîâ ñ COVID-19 ñ ñåðüåçíûìè çàáîëåâàíèÿìè òàêæå ìîæåò áûòü ðåçóëüòàòîì ñíèæåíèÿ ïîòðåáëåíèÿ ñâåæèõ îâîùåé è ôðóêòîâ (îñîáåííî â çèìíèé è âåñåííèé ñåçîíû), ÷òî ñîñòàâëÿåò áîëåå 50% ïîòðåáëåíèÿ ãëóòàòèîíà ñ ïèùåé. Ãèïîòåçà ïðåäïîëàãàåò, ÷òî SARS-CoV -2 ïðåäñòàâëÿåò îïàñíîñòü òîëüêî äëÿ ëþäåé ñ ýíäîãåííûì äåôèöèòîì ãëóòàòèîíà, íåçàâèñèìî îò òîãî, êàêèå èç ôàêòîðîâ ñòàðåíèÿ, ñîïóòñòâóþùèå õðîíè÷åñêèå çàáîëåâàíèÿ, êóðåíèå èëè íåêîòîðûå äðóãèå áûëè ïðè÷èíîé ýòîãî äåôèöèòà.(10) Ãèïîòåçà äàåò íîâîå ïîíèìàíèå ýòèîëîãèè è ìåõàíèçìîâ, îòâåòñòâåííûõ çà ñåðüåçíûå ïðîÿâëåíèÿ èíôåêöèè COVID-19, è îïðàâäûâàåò ìíîãîîáåùàþùèå âîçìîæíîñòè äëÿ ýôôåêòèâíîãî ëå÷åíèÿ è ïðîôèëàêòèêè áîëåçíè çà ñ÷åò âîññòàíîâëåíèÿ ãëóòàòèîíà ñ ïîìîùüþ N-àöåòèëöèñòåèíà è âîññòàíîâëåííîãî ãëóòàòèîíà.

Ïîñêîëüêó ïðîòèâîâèðóñíûé ýôôåêò ãëóòàòèîíà íåñïåöèôè÷åñêèé, åñòü îñíîâàíèÿ ïîëàãàòü, ÷òî ãëóòàòèîí òàêæå àêòèâåí ïðîòèâ SARS-CoV-2.(3,11,18) Òàêèì îáðàçîì, âîññòàíîâëåíèå óðîâíÿ ãëóòàòèîíà ó ïàöèåíòîâ ñ COVID-19 áûëî áû ìíîãîîáåùàþùèì ïîäõîäîì ê ëå÷åíèþ íîâîãî êîðîíàâèðóñà SARS-CoV-2. Ïðèìå÷àòåëüíî, ÷òî äëèòåëüíîå ïåðîðàëüíîå ââåäåíèå N-àöåòèëöèñòåèíà óæå áûëî ïðîòåñòèðîâàíî êàê ýôôåêòèâíàÿ ïðîôèëàêòè÷åñêàÿ ìåðà ïðîòèâ ðåñïèðàòîðíûõ âèðóñíûõ èíôåêöèé.(18) N-àöåòèëöèñòåèí øèðîêî äîñòóïåí, áåçîïàñåí è äåøåâ è ìîæåò èñïîëüçîâàòüñÿ «íå ïî íàçíà÷åíèþ». Áîëåå òîãî, ïàðåíòåðàëüíàÿ èíúåêöèÿ âîññòàíîâëåííîãî ãëóòàòèîíà (GSH áîëåå áèîäîñòóïåí, ÷åì NAC) ìîæåò áûòü ýôôåêòèâíîé òåðàïèåé äëÿ ïàöèåíòîâ ñ COVID-19 ñ ñåðüåçíûì çàáîëåâàíèåì. (19)

 

 

 

 

 

 

 

 

 

 

 

Âîò ñïèñîê êëèíè÷åñêèõ èññëåäîâàíèé, êîòîðûå áûëè îðãàíèçîâàíû â ðàçëè÷íûõ ñòðàíàõ ìèðà äëÿ ëå÷åíèÿ COVID-19 ïóòåì óâåëè÷åíèÿ ñèíòåçà ãëóòàòèîíà:

 

Study title

Country

Link

 


Antioxidant therapy for COVID-19

Nigeria

https://clinicaltrials.gov/ct2/show/NCT04466657?term=acetylcysteine&cond=%22Coronavirus+Infections%22&draw=2&rank=4 

 


Efficacy of NAC in Preventing COVID-19 From Progressing to Severe Disease

US

https://clinicaltrials.gov/ct2/show/NCT04419025?term=acetylcysteine&cond=%22Coronavirus+Infections%22&draw=2&rank=1 

 


COVID-19 Algae Treatment Trial (CATT) Spirulina and N-acetylcysteine in COVID-19 Infection

Iran

https://ethics.research.ac.ir 

 




NAC in treatment and recovery of patients with COVID-19 admitted in Hospital

Iran

https://www.irct.ir/trial/49277





High dose IV NAC in Covid-19 Patients

US

https://clinicaltrials.gov/ct2/show/NCT04374461?term=acetylcysteine&recrs=abd&map_cntry=US&draw=2&rank=4 



Effect of N-acetylcysteine on COVID-19 treatment

Saudi Arabia

https://doi.org/10.1186/ISRCTN60069084 



IV NAC/Methylene Blue for Treatment of Covid-19 Patients

Iran

https://clinicaltrials.gov/ct2/show/NCT04370288?term=acetylcysteine&cond=%22Coronavirus+Infections%22&draw=2&rank=3 



Comparison of the administration of Vit D3 and NAC tablets in COVID-19 patients and their effect on recovery

Iran

https://www.irct.ir/trial/46732 





IV NAC for Treatment of Severe COVID

Brazil

http://www.ensaiosclinicos.gov.br/rg/RBR-8969zg/





nebulized Heparin-N-acetylcysteine in COVID-19 Patients by Evaluation of pulmonary function (HOPE))

US

https://atossatherapeutics.com/atossa-therapeutics-announces-availability-of-manuscript-on-results-from-in-vitro-testing-of-covid-19-drug-at-h201/



Treatment of Pulmonary Fibrosis Due to 2019-nCoV Pneumonia 

China

https://ClinicalTrials.gov/show/NCT04279197






Study to demonstrate evaluation of dendrimer NAC in COVID-19 patients

US

https://clinicaltrials.gov/ct2/show/NCT04458298?term=acetylcysteine&recrs=abd&map_cntry=US&draw=3&rank=40 



Trial of Famotidine & N-Acetyl Cysteine for Outpatients With COVID-19

US

https://ichgcp.net/clinical-trials-registry/NCT04545008 



Efficacy of Inhaled NAC in COVID-19

Iran

https://www.irct.ir/trial/48061 





 

 

Ñïèñîê ëèòåðàòóðû

 

1.        Èíñòðóêöèÿ ïî ïðèìåíåíèþ ëåêàðñòâåííîãî ïðåïàðàòà ÃËÀÒÈÎÍ (ÐÓ ¹ËÏ-001337 îò 08.12.2011)

2.        Alexey Polonikov. Endogenous Deficiency of Glutathione as the Most Likely Cause of Serious Manifestations and Death in COVID-19 Patients PMID: 32463221 PMCID: PMC7263077DOI: 10.1021/acsinfecdis.0c00288

3.        Wu Z.; McGoogan J. M. (2020) Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 323, 1239.10.1001/jama.2020.2648. [PubMed] [CrossRef] [Google Scholar]

4.        Betteridge D. J. (2000) What is oxidative stress?. Metab., Clin. Exp. 49 (2 Suppl 1), 3–8. 10.1016/S0026-0495(00)80077-3. [PubMed] [CrossRef] [Google Scholar]

5.        Hekimi S.; Lapointe J.; Wen Y. (2011) Taking a ″good″ look at free radicals in the aging process. Trends Cell Biol. 21, 569–576. 10.1016/j.tcb.2011.06.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6.        Pisoschi A. M.; Pop A. (2015) The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 97, 55–74. 10.1016/j.ejmech.2015.04.040. [PubMed] [CrossRef] [Google Scholar]

7.        Yang J.; Zheng Y.; Gou X.; Pu K.; Chen Z.; Guo Q.; Ji R.; Wang H.; Wang Y.; Zhou Y. (2020) Prevalence of comorbidities and its effects in coronavirus disease 2019 patients: A systematic review and meta-analysis. Int. J. Infect. Dis. 94, 91–95. 10.1016/j.ijid.2020.03.017. [PMC free article][PubMed] [CrossRef] [Google Scholar]

8.        Lee C. (2018) Therapeutic Modulation of Virus-Induced Oxidative Stress via the Nrf2-Dependent Antioxidative Pathway. Oxid. Med. Cell. Longevity 2018, 6208067.10.1155/2018/6208067. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9.        Forman H. J.; Zhang H.; Rinna A. (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med. 30, 1–12. 10.1016/j.mam.2008.08.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10.     Zhou F.; Yu T.; Du R.; Fan G.; Liu Y.; Liu Z.; Xiang J.; Wang Y.; Song B.; Gu X.; Guan L.; Wei Y.; Li H.; Wu X.; Xu J.; Tu S.; Zhang Y.; Chen H.; Cao B. (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet395, 1054–1062. 10.1016/S0140-6736(20)30566-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11.     Borges do Nascimento I. J.; Cacic N.; Abdulazeem H. M.; von Groote T. C.; Jayarajah U.; Weerasekara I.; Esfahani M. A.; Civile V. T.; Marusic A.; Jeroncic A.; Carvas Junior N.; Pericic T. P.; Zakarija-Grkovic I.; Meirelles Guimarães S. M.; Luigi Bragazzi N.; Bjorklund M.; Sofi-Mahmudi A.; Altujjar M.; Tian M.; Arcani D. M. C.; O’Mathúna D. P.; Marcolino M. S. (2020) Novel Coronavirus Infection (COVID-19) in Humans: A Scoping Review and Meta-Analysis. J. Clin. Med. 9, 941.10.3390/jcm9040941. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12.     Vardavas C. I.; Nikitara K. (2020) COVID-19 and smoking: A systematic review of the evidence. Tob. Induced Dis. 18, 20.10.18332/tid/119324. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13.     Alvarez J. A.; Chowdhury R.; Jones D. P.; Martin G. S.; Brigham K. L.; Binongo J. N.; Ziegler T. R.; Tangpricha V. (2014) Vitamin D status is independently associated with plasma glutathione and cysteine thiol/disulphide redox status in adults. Clin. Endocrinol. (Oxford, U. K.) 81, 458–466. 10.1111/cen.12449. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14.     Jain S. K.; Micinski D.; Huning L.; Kahlon G.; Bass P. F.; Levine S. N. (2014) Vitamin D and L-cysteine levels correlate positively with GSH and negatively with insulin resistance levels in the blood of type 2 diabetic patients. Eur. J. Clin. Nutr. 68, 1148–1153. 10.1038/ejcn.2014.114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15.     Jain S. K.; Kahlon G.; Bass P.; Levine S. N.; Warden C. (2015) Can L-Cysteine and Vitamin D Rescue Vitamin D and Vitamin D Binding Protein Levels in Blood Plasma of African American Type 2 Diabetic Patients?. Antioxid. Redox Signaling 23, 688–693. 10.1089/ars.2015.6320. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16.     Jain S. K.; Kanikarla-Marie P.; Warden C.; Micinski D. (2016) L-cysteine supplementation upregulates glutathione (GSH) and vitamin D binding protein (VDBP) in hepatocytes cultured in high glucose and in vivo in liver, and increases blood levels of GSH, VDBP, and 25-hydroxy-vitamin D in Zucker diabetic fatty rats. Mol. Nutr. Food Res. 60, 1090–1098. 10.1002/mnfr.201500667. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17.     Parsanathan R.; Jain S. K. (2019) Glutathione deficiency induces epigenetic alterations of vitamin D metabolism genes in the livers of high-fat diet-fed obese mice. Sci. Rep. 9, 14784.10.1038/s41598-019-51377-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18.     De Flora S.; Grassi C.; Carati L. (1997) Attenuation of influenza-like symptomatology and improvement of cell-mediated immunity with long-term N-acetylcysteine treatment. Eur. Respir. J.10, 1535–1541. 10.1183/09031936.97.10071535. [PubMed] [CrossRef] [Google Scholar]

19.     Horowitz R. I.; Freeman P. R.; Bruzzese J. (2020) Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: A report of 2 cases. Respir Med. Case Rep 30, 101063.10.1016/j.rmcr.2020.101063. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20.     Filomeni G., Rotilio G., Ciriolo M.R. 2002. Cell signalling and the glutathione redox system. Biochem. Pharmacol. 64: 1057-1064.

21.     Filomeni G., Aquilano K., Civitareale P., Rotilio G., Ciriolo M.R. Activation of c-jun-N-termainal kinase is required for apoptosis triggered by glutathione disulfide in neuroblastoma cells//Free Rad. Biol. Med. 2005.39: 345-354.

22.     Piero Seetili and Carmela Fimognari. Paracetamol-Induced Glutathione Consumption: Is There a Link With Severe COVID-19 Illness?  Front. Pharmacol., 07 October 2020https://doi.org/10.3389/fphar.2020.579944

 


Íàçàä
%core.include_templ(footer)%